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ANALYSIS OF WOVEN AND BRAIDED FABRIC REINFORCED COMPOSITES
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ABSTRACT

A general purpose micromechanics analysis that discretely models the yarn architecture
within the textile repeating unit cell, was developed to predict overall, three dimensional,
thermal and mechanical properties. This analytical technique was implemented in a user- .
friendly, personal computer-based, windows compatible code called Textile Composite
Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-
harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided
composites. The calculated overall stiffnesses correlated well with available 3-D finite element
results and test data for both the woven and the braided composites. Parametric studies were
performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and
mechanical constants for plain weave composites. The effects of braid angle were investigated
for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn
undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites

were also investigated.

Key Words: textile composites, modeling, plain weave, satin weave, triaxial braid, yarn,
crimp, design, thermal, stiffness, elastic properties.
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INTRODUCTION

Composite materials reinforced with woven and braided fabric preforms are being
considered for potential structural applications in the aircraft and automotive industries.
Fabric-reinforced 'textile’ composites potentially have better out-of-plane stiffness, strength,
and, toughness properties than tape lamiriates. rTrhrey are also amenable to automatedna‘nd
efficient manufacturing techniques. However, the architecture of a textile composite is
complex and, therefore, the parameters controlling its mechanical properties are numerous.
This necessitates development of analytical models to predict the thermal and mechanical
properties of textile composites. The present study focuses on the analysis of woven and

braided textile composites.

Fabric Architecture

A two-dimensional (2-D) woven composite laminate is one of the simplest textile
composites and it consists of stacked, pre-impregnated layers of woven fabric [1] which are
cured and consolidated by a process similar to tape laminates. The fabric is composed of two
sets of interlacing, mutually orthogonal (warp and fill) yarns (Fig. 1). Each yarn is a bundle
of filaments (or fibers) and the yarn size is measured by the number of filaments in the yarn.
The fabric is woven on a loom and its architecture is characterized by the interlacing pattern of
the warp and fill yarns. Some of the commonly used weave architectures are the plain weave,
5-harness satin and 8-harness satin weaves (see Fig. 1). The periodicity of the repeating
pattern in a woven (or braided) fabric can be used to isolate a small repeating unit cell (RUC)
which is sufficient to describe the fabric architecture. The RUC for the plain, 5- and 8-harness
satin weaves are indicated in Fig. 1 by dark borders. The interlacing of the yarns in a fabric
leads to yarn undulation or ‘crimp’. Composite stiffness properties are governed by (i) weave
parameters such as weave architecture, yarn sizes, yarn spacing, and yarn crimp; (ii) laminate
parameters such as stacking orientations and overall fiber volume fraction; and (iii) material

parameters such as yarn and resin stiffnesses.



Braided preforms are fabricated over a cylindrical mandrel. A single layer of a 2-D
braid consists of either two or three intertwined yamns. The braider yarns follow the +6 and
9 directions and usually interlace in eithera 1 x 1 or a 2 x 2 pattern (see Fig. 2). A 1x 1
pattern is similar to the interlacing in a plain weave fabric (see Fig. 2(a)). Ina 2 x 2 pattern a
+0 braider yarn continuously passes over two -0 braider yarns and then under two -6 braider
yarns and vice versa. A 2-D triaxial braid consists of axial yarns in addition to the off-axis
braider yarns (see Fig. 2(b)). The axial yarns follow the longitudinal direction and are
inserted between the braider yarns.

A 2-D braided composite laminate of a certain desired thickness is formed by
overbraiding layers of the desired architecture on top of each other. After the preform is
removed from the mandrel, slit along the axial direction, flattened and border stitched, resin is
introduced by a resin transfer molding process. This leads to a two dimensional material as
there are no interlayer yarns through the laminate thickness. Composite stiffness properties are
governed by (i) braid parameters such as braid architecture, yarn sizes, yarn spacing, and yarn
crimp; and (ii) material parameters such as yarn and resin stiffnesses and overall fiber volume
fraction.

Typical photomicrographs for a 2x2, 2-D braided laminate are shown in Fig. 3. The
longitudinal section (Fig. 3(a)) along the axial yarns indicates minor crimp in these yarns.
Fig. 3(b) shows a transverse section of the laminate. The lenticular cross-sectional shape of
the axial'yarns is evident. Also, the axial yarns do not stack on top of one another. This is
due to nesting between layers during the brading operation. Fig. 3(c) shows a section along
the braider yarns. The degree of crimp in the braider yarns as they intertwine is well

illustrated in this section.

Analytical Techniques
A number of analytical and numerical techniques have been used to analyze both woven

and braided composites. All of the proposed models exploit the periodicity of the textile



architecture to isolate a representative unit cell (RUC). The RUC is assumed to lie in the
interior of the composite away from edge effects. Overall properties are calculated by making
certain assumptions about the RUC internal geometry and deformation field. A review of the
analytical models used in the past was presented by Raju, Foye, and Avva [2]. Some of the
earlier models for analyzing woven and braided composites are highlighted below.

Chou and Ishikawa [3] presented three different models for 2-D woven composites
based on classical lamination theory (CLT) - the mosaic model, the fiber undulation model,
and the bridging model. The mosaic model neglected the undulation of the yarns and idealized
the RUC as an assemblage of asymmetric cross-ply laminates. The fiber undulation model
considered the undulation in the fill yarn direction but neglected the undulation in the warp
yarns. The bridging model extended the applicability of the fiber undulation model to the
analysis of satin weave composites (Fig. 1) by separately modeling the straight portions of the
yarns.

The fabric geometry model (FGM) [4] was another model based on CLT. It combined
textile engineering methodology and a modified laminate theory. The geometric model
consisted of straight yarns oriented in six different directions. Such a unit cell representation
neglected the crimp in the yarns. The FGM was also used together with an energy analysis [5]
to predict stiffness properties of three-dimensional (3-D) braided composites. The FGM model
was further modified by Pastore and Gowayed [6]. The fiber inclination model (FIM) [7] was
also based on CLT. It treated the fabric unit cell as an assemblage of inclined unidirectional
laminae. The FIM also neglected the crimp in the yarns. Ramnath [8] presented an approach
that used a variable yarn cross-section geometry model along with admissible displacement and
stress fileds to determine bounds on the élastic prbperties of 2-D woven composites.

Naik and Ganesh [9] and Raju and Wang [10] developed models for woven composites
that accounted for undulations in both the fill and the warp yarns. They computed overall
stiffness properties by assuming either iso-strain or iso-stress or a combination of these and

analytically integrating through the volume of the RUC. Due to the tedious analytical



description of yarn cross-sectional shapes and yarn paths and the analytical volume
integrations, this approach is not well suited for the analysis of more complicated architectures
such as 2-D braids and 2-D triaxial braids.

Three-dimensional (3-D) finite element models (FEM) [11-15] have also been
developed for the analysis of plain weave composites. The 3-D FEM are highly computer
intensive and also require considerable time and effort for model generation. Foye [13]
developed inhomogeneous finite elements and analyzed sub-cells within the RUC to overcome
these limitations. He analyzed many textile architectures including plain and satin weaves,
2-D braids, and 2-D triaxial braids. However, he had to manually calculate the stiffness
properties, after estimating the material directions and volume fractions, for each element in

“the 3-D model. FEM is, therefore, not well suited for performing parametric studies to
investigate the sensitivity of overall mechanical properties to architecture parameters.

Naik, Masters and Ifju [16] presented a simple but accurate geometric modeling and
analysis technique for 2-D triaxially braided composites. They discretely modeled the yarn
centerline paths within the RUC by assuming sinusoidal undulations and used a yarn
discretization scheme together with a 3-D stress averaging procedure to compute overall
stiffness properties which correlated well with test data over a wide range of architecture
parameters. The objective of the present study was to extend this modeling approach to the
development of a general purpose analysis technique that could (i) discretely model the internal
yarn architecture and (ii) calculate overall thermal and mechanical properties for a variety of
woven and braided composite materials, such as, plain and satin weaves (Fig. 1), 2-D braids
and 2-D triaxial braids (Fig. 2) and other textile architectures. Another objective of this effort
was to develop a technique that was accurate enough to provide good estimates of overall
properties over a wide range of architecture parameters while being simple enough to be

performed on a personal computer.



ANALYTICAL PROCEDURES

The analysis of a fabric reinforced composite requires, first, a proper three dimensional
description of the preform architecture. The geometric modeling of the preform architecture
was performed, in the present study, by utilizing the periodicity of the textile composite to
isolate a repeating unit cell (RUC). For each yarn within the RUC the yarn centerline path
was then described by assuming a flattened lenticular cross-sectional shape for the interlacing
yarns. This assumption was based on the lenticular yarn cross-sectional shapes observed in
micrographs of the composite (see Fig. 3). Details of the geometric modeling technique and
its applications to various woven and braided architectures are included in the following
sections. Having described the fiber architecture, the three dimensional effective stiffnesses
for the composite were computed by first discretizing each yarn in the RUC into yarn slices
and then using the material properties, spatial orientation, and volume fraction of each yarn

slice in a volume averaging technique that assumed an iso-strain state within the RUC.

Geometric Modeling of Plain Weave Composites

The RUC for the 2-D plain weave composite is shown in Fig. 4. The sectional view in
Fig. 4 (section A-A) shows the undulations of a warp yarn as it crosses over and under the fill
yarns. Only one layer of the plain weave is shown in the sectional view. The analysis of
stacked woven and braided layers is discussed in a following section.

The plain weave composite is usually specified by known quantities such as yarn
spacing, a, in the fill and warp directions, yarn filament count, n, for the fill and warp yarns,
yarn packing density, py, filament diameter, d;, and overall fiber volume fraction, V. These
known quantities were used to determine the unknown quantities such as yarn thicknesses, yarn
cross-secnonal :arééé, yarn crimb angle rand yarn undulaﬁné patiISWthh are réquiréd tb o
discretely model each yarn within the RUC. For the sake of simplicity, the yarn spacings and
yarn fiber counts for the fill and warp directions were assumed to be equal in the following

derivation.



The yarn cross-sectional area, A, was assumed to be the same for both the warp and fill
yarns and also to remain constant along the entire yarn path. The projected length, L,, of the
yarn path for each yarn was a function of the yarn spacing, a, and was given by L, =2a(see
Fig. 4). The volume occupied by the four yarns within the RUC was given by 4 A L,. The
dimensions of the RUC were L, x L, x H, where H was the RUC thickness. The volume of
the RUC not occupied by the yarns was assigned to the interstitial matrix. For a yarn packing

density of py, the overall fiber volume fraction, V, for the RUC in Fig. 4 can be derived as:

2p, A
v, = e (1)

Using the yarn filament count, n, and filament diameter, d;, the unknown cross-sectional area,

A, for the yarns was calculated as:

@)

For a given overall fiber volume fraction, the unknown thickness, H, was calculated using
Eqns. (1) and (2). The quantity p; may either be determined by image analysis of
photomicrographs of sections through the thickness of the composite or may be assumed to be
between 0.7 - 0.8. The yarn thickness, t, was related to the RUC thickness, H, by t = H/2.
The yarn width, w, was calculated by assuming complete coverage (i.e. no gap between
adjacent yarns) and was given by w = a.

The yarn path for each of the four yarns in the RUC consists of two straight portions
and three undulating portions. The undulations are centered around cross-over points (COP)
where a yarn crosses over or under another yarn (see Fig. 4). In each of the three undulating

portions, the yarns were assumed to follow a sinusoidal path. The sine function used to



describe the yarn centerline path had its origin at the COP and was determined by the vertical
shift, V,, and the undulating length, L. For a warp yarn, for example, the undulation, Z_, at

each COP was expressed as:

vV, . [®X,
y4 —:t—sm(L ) €)]

where, X_ was measured from the corresponding COP along the warp yarn direction. A
negative sign was used in Eqn.(3) to describe the undulation, at the central COP, for the warp
yarn shown in section A-A (see Fig. 4). A positive sign was used in Eqn. (3) to describe the
undulations at the COPs located on the RUC edges for the same warp yarn. Only half the sine
wave was used to describe the yarn centerline paths at the edge COPs. The centerline path for
the other warp yarn in the RUC was described in a similar manner by using Eqn. (3) with the
appropriate sign and sine wave portion at each COP. The undulations in the fill yarns were
also described by Eqn. (3) by measuring X along the fill yarn direction (i.e. along the Y-
axis).

For the plain weave architecture, the vertical shift, V., in Eqn. (3) was equal to the
thickness, t, of the yarns. The parameter, L, was determined by considering the cross-
sectional shape of the yarns which consisted of a central flat portion of thickness, t, and two
sinusoidal lenticular end portions as shown in Fig. 4. The curved portions of the yarn cross-
section were assumed to be described by the sinusoidal functional form of Eqn. (3). Thus, the
width of the curved portion of the yarn cross-section was equal to L,/2. The cross-sectional

area, A, was expressed as:

A=wt-L“V,(I-%) @)



The unknown parameter, L,,, was calculated using Eqns. (2) and (4). The total length of the

straight portions, L,,, of each yarn was expressed as:

L,=2a-2L, ©)

Thus, Eqns. (1) - (5) were used to determine all the required geometry parameters for the plain
weave RUC, which included, the yarn cross-sectional area, yarn thickness, and, yarn paths
based on a knowlegde of the yarn filament counts, yarn spacing, yarn packing density,
filament diameter, and overall fiber volume fraction. Note that, Eqn. (4) is valid for w>L,
which physically implies that the parameter, L, (also the total width of the curved portions of
the yarn cross-section) cannot exceed the spacing, a, between the yarns.

The undulation in the yarns is often described by its "crimp angle”. In the present
study, the crimp angle (see Fig. 4) was defined as the positive angle between the tangent to the
sinusoidal yarn centerline path and the X-Y plane (see Fig. 4) at a COP. Thus, the crimp

angle, O, was expressed as:

tan(0.) = (6)

In general, 8,,;, <8, < (n/2), where, 0,;,, was the minimum 6, for a given plain weave

architecture and was determined by the constraint w > L.

Geometric Modeling of Satin Weave Composites
The RUCs for the 5-harness satin weave and the 8-harness satin weave are shown in
Figs. 5 and 6, respectively. The sectional views in Figs. 5 and 6 (section A-A) show the

undulations of a warp yarn as it crosses over and under the fill yarns.



The architecture modeling for the satin weave composite was similar to the plain weave
composite. The yarn cross-sectional area, A, was assumed to be the same and to remain
constant for each yarn in the RUC. The projected length, L,, of the yarn path for each yarn
and, A, were used to calculate the volume occupied by the yarns within the RUC. The
volume occupied by the yarns within the RUC was givenby 2h AL, where h =5 fora 5-
harness satin weave and h = 8 for a 8-harness satin weave. The projected length, L, was a
function of the yarn spacing, a, and was given by L, = h a (see Figs. 5 and 6). The |
dimensions of the RUC were L, x L, x H, where H was the RUC thickness. The volume of
the RUC not occupied by the yarns was assigned to the interstitial matrix in the RUC. The
yarn width, w, was related to the yarn spacing, a, by assuming complete coverage and was
given by w = a. For a yarn packing density of p,, the overall fiber volume fraction, Vi, for
the 5- and 8-harness satin weave architectures can be shown to be given by Eqn. (1). The yarn
cross-sectional area, A, for both the satin weave architectures was calculated using Eqn. (2).
The RUC thickness, H, was then calculated using Eqns. (1) and (2) for both satin weaves.
Yarn thickness, t, was given by t = (H/2).

The yam undulations were centered around either two or three cross-over points for the
satin weaves. For example, for the 5-harness satin weave, the warp yarns in the first, third,
and fourth rows from the top (Fig. 5) had two COPs, while warp yarns in the second and fifth
(section A-A) rows had three COPs. The sine function given by Eqn. (3) was used to describe
the yarn centerline paths at the COPs with the appropriate sign and sine wave portion at each
COP.

For both the satin weave architectures, the vertical shift, V,, in Eqn. (3) was equal to
the thickness, t, of the yarns. The parameter, L, which was also the total width of the curved
portion of the cross-sectional shape of the yarns (see Fig. 4) was calculated using Eqns. (2)
and (4). The total length of the straight portion of each yarn was given by:

Lst=ha'2Lu N

10



where h = 5 for S5-harness satin weaves and h = 8 for 8-harness satin weaves. Thus,

Eqns. (1) - (4), (7) were used to determine the geometry of the 5- and 8-hamness satin weave
composites. The crimp angle, 6., was given by Eqn. (6) and the constraint w 2 L, was used
to determine 8,,,;,. Note that, Eqn. (7) can be substituted for Eqn. (5) by using h = 2 for the
plain weave composite, thereby, generalizing the formulation for the plain, 5-harness satin,

and, 8-harness satin weave composites.

Geometric Modeling of 2-D Braided Composites

The RUC for the 2-D braided architecture is shown in Fig. 7. The sectional view in
Fig. 7 (section A-A) shows the undulations of a +90 braider yarn as it crosses over and under
the - braider yarns. The architecture modeling for the 2-D braided composite was similar to
the plain weave composite. However, unlike the plain weave, the braider yarns, in a 2-D
braid, interlace at non-orthogonal angles. This fact was accounted for in determining the yarn
paths in a 2-D braid. The yarn projected length, L, was a function of the yarn spacing, a,

(perpendicular to the yarn direction) and the braid angle, 6,,, and was given by:

2a
L, = ——
* "~ sin(28,,)

@®
where 6, was measured with respect to the Y-axis (see Fig. 7).

As in the plain weave, the yarn cross-sectional area, A, was assumed to be the same
and to remain constant for each yarn in the RUC. The projected length, L,, of the yarn path
for each yarn and, A, were used to calculate the volume occupied by the yarns within the
RUC. The volume occupied by the four yarns within the RUC was given by 4 AL,. The
dimensions of the parallelepiped RUC were L, x L, x H, where H was the RUC thickness and

included angle between the two sides with length, L, was 26,,. The volume of the RUC not

11



occupied by the yarns was assigned to the interstitial matrix in the RUC. The yarn width, w,
(perpendicular to the yarn direction) was related to the yarn spacing, a, by assuming complete
coverage and was given by w = a. For a yarn packing density of p,, the overall fiber volume
fraction, Vi, for the 2-D braid can be shown to be given by Eqn. (1). The yarn cross-sectional
area, A, for the 2-D braided architecture was calculated using Eqn. (2). The RUC thickness,
H, was then calculated using Eqns. (1) and (2). Yarn thickness, t, was given by t = (H/2).
As in the plain weave architecture, the yarn undulations for the 2-D braid are centered

around three cross-over points for each yarn. The sine function given by

®

<

L

7 = :t% sin(n X, sm(26,,,)}

where, X, is measured from the corresponding COP along the braider yarn direction, was used
to describe the yarn centerline paths at the COPs with the appropriate sign and sine wave
portion at each COP. The vertical shift, V,, in Eqn. (9) was equal to the thickness, t, of the
braider yarns. The cross-sectional shape of the braider yarns (perpendicular to the braider
yarn direction) was similar to that shown in Fig. 4 and consisted of a central flat portion of
thickness, t, and two sinusoidal lenticular end portions of width, L,/2. The total width, L,
was calculated using Eqns. (2) and (4). The total length of the straight portion of each yarn

path, L, (along the braider yarn direction) was given by

_2(a-Lu)

“ " sin(26,,) (19)

12



Thus, Eqns. (1), (2), (4), (9) and (10) were used to determine the geometry of the 2-D braided
composites. The crimp angle, 6., was determined by using Eqns. (6) and (9) and the

limitation w 2L, was used to determine 6.

Geometric Modeling of 2-D Triaxial Braided Composites

The RUC used for the 2x2, 2-D triaxial braid is shown in Fig. 8. The sectional view
A-A shows the undulation of a braider yarn which undulates over and under the axial yarns in
the RUC. The 2-D triaxial braided composite is usually specified by known quantities such as
braid angle, 6,,, axial yarn spacing, d,, yarn filament counts for the axial and braider yarns,
n, and n, respectively, yarn packing density, p,, filament diameter, d;, and overall fiber
volume fraction, V;. These known quantities were used to determine the unknown quantities
such as yarn thicknesses, yarn cross-sectional areas, yarn crimp angle and yarn undulating
paths which are required to discretely model each yarn within the RUC. A detailed description
of the geometric modeling approach for the 2x2, 2-D triaxial braided composite was presented
in Ref. 16. Simplified equations for the same geometric model are presented here.

As before, the yarn cross-sectional areas, A, and A, for the axial and braider yarns,
respectively, were assumed to remain constant along the entire yarn path. The projected
lengths, L, and L, of the axial and braider yarn paths were a function of the axial yarn
spacing, d,, and the braid angle, 68,,, and were given by L, = 8 d, cot(8,,) and
L, = 2 d /sin(B,,), respectively. Note that L, represents the total projected length of the four
axial yarns within the RUC. The total volume occupied by the axial and braider yarns was
given by (A, L, + 8 L Ay). The dimensions of the parallelepiped RUC were L, x Ly x H,
where H was the RUC thickness and the included angle between the two sides with length, L,
was 26,.. The volume of the RUC not occupied by the yarns was assigned to the interstitial
matrix in the RUC. For a yarn packing density of py, the overall fiber volume fraction, Vi,
for the RUC in Fig. 8 was derived as:

13



_py (A, sin(29!) + 4 A, sin(8,,))

\"
f Hd, sin(26,,) an

where, H is the thickness of the RUC. Using the known yarn filament counts, n, and n,,
filament diameter, d;, the unknown cross-sectional areas, A, and A, for the axial and braider
yarns, respectively, were calculated using Eqn. (2). For a given overall fiber volume fraction,

the unknown thickness, H, was then calculated using Eqn. (11). The braider yarn thickness,

t,, was a function of the RUC thickness, H, and the yarn thickness ratio, m

, m = =% (12)

where t, was the thickness of the axial yarns. The unknown yarn thickness ratio, m, was
determined recursively as described below. The braider yarn width, w,, (perpendicular to the
yarn direction) was calculated by assuming complete coverage (i.e. no gap between adjacent

yarns) and was given by

W, = dO COS(ebr) (13)

The yarn path for the axial yarns was assumed to be straight throughout the RUC. The
braider yarn path consisted of straight portions and undulating portions. In the undulating
portion the braider yarn was assumed to follow a sinusoidal path at each COP. The sine

function used to describe the braider yarn centerline path, Z_, at each COP was expressed as:

N
1l

) 2 L

:tL sin(M] (14)
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where, X, was measured from the corresponding COP along the braider yarn direction.
Eqn. (14) was used to describe the yarn centerline paths at the COPs with the appropriate sign
and sine wave portion at each COP. The vertical shift, V,, in Eqn. (14) was equal to the sum
of the axial and braider yarn thicknesses and was given by V, = t, + t,.

The parameter, L,,, was determined by considering the cross-sectional areas, A, and
A,, of the axial and braider yarns which were expressed by Eqns. (15) and (16), respectively,

as:

[

= - - E = si ! 1 )
A w,t, - L, V. (1 n(s +cos(S))), s = sin (1+m (15)

where, w, = d, -2 s (L,/n) was the width of the axial yarns, and

A, =w,t, - =L, (t,s - V, (1 - cos(s))) (16)

2
n
The unknown parameters, L, and m, were determined by a recursive solution of Eqns. (15)

and (16) in which A  and A, were calculated using Eqn. (2). The total length of the straight

portion of each braider yarn was given by

_2(d, - L)

L
" sin(8,,)

)

Thus, Eqns. (2), (11) - (17) were used to determine the geometry of the 2x2, 2-D, triaxial
braided composites. The crimp angle, 6., was given by Eqns. (6) and (14) and the limitations

w, 2L, 2s/n) and w, =L, (1 - (2 s/n)) were used to determine the 6,,;,.

15



Discretization of Yarns

Overall composite properties were determined by discretizing each of the yarns within
the RUC. The straight portions of each yarn path were modeled as a single slice with length,
L,. Along an undulating portion, the yarn was divided into n, equal, piecewise straight slices
made perpendicular to its in-plane direction and normal to the X-Y plane (Fig. 8). Thus, the
undulating, sinusoidal yarn path was approximated by n interconnected straight yarn slices.
The volume of each yarn slice was computed as (Ay Ly/n) where A, and Ly are the yarn cross-
sectional area and the length of the undulating portion, respectively. Note that, L, = L, for
the woven architectures (Figs. 4-6) and L, = L, for the braided architectures (Figs. 7, 8).

The spatial orientation of each yarn slice was described by the in-plane angle, 0, that it
made with the X-axis (Fig. 8) and the out-of-plane angle, B, that it made with the X-Y plane.
For the woven architectures, the angle 6 was either 0 (warp yarns) or 90 (fill yarns) degrees.
For the braided composites, the angle 8, for the braider yarns, was determined from a
knowledge of the braid angle. The angle B, for both woven and braided architectures, was
calculated, for each yarn slice, by differentiating the sine function used to describe the
undulating yarn centerline path. For the yarn slice that modeled the straight portions of the
yarn path, B = 0 was used.

Thus, each yarn in the RUC was approximated by straight yarn slices with known
volumes and known orientation angles 6 and . The total volume occupied by all the yarn
slices was subtracted from the volume of the RUC to compute the volume occupied by the
interstitial matrix pockets in the RUC. The interstitial matrix was represented as an isotropic

material slice having orientation angles® = = 0.

Calculation of Three-Dimensional Effective Stiffnesses
For the purpose of calculating overall properties, the RUC of the textile composite was
treated as a spatially oriented fiber composite composed of yarn slices with transversely

16
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isotropic material properties and longitudinal material axes oriented at known angles 6 and B.
A stress averaging technique [17] based on an iso-strain assumption within the RUC was used
to compute overall composite properties as described below.

The three-dimensional thermoelastic stresé;—sirain relations, in glot;z;.l: XfZ:coordinates,
for the composite RUC were defined using effective material properties to relate the average
values of the state variables. Using the usual contracted notation [18], the stress-strain relation

was written in matrix form as

{0} =[Ceql ({8} - {0} AT) (18)
where {0} =10_, 6,,,0,, 0, O,, O, f.the overbar denotes average values over the
RUC, {e} = {e., &, €2, £, E,., &, 1. {0} = {a,,, @, @, 0, 0, 0} are the

overall coefficients of thermal expansion (CTE), AT is the change in temperature and [C eff]

is a 6x6 matrix [18] of the overall, three-dimensional effective stiffnesses of the composite.
For a set of displacement boundary conditions applied to the RUC the average strains
in the composite were given by {E} The following procedure was used to determine {5}.
An iso-strain state was assumed to exist within the RUC. This provided for compatibility
among yarn slices and also led to displacements that satisfied the boundary conditions. In the
global RUC coordinates (XYZ coordinates), the strains in each yarn slice were, therefore,

given by

(&= (@) 9)
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where the subscript m denotes the m'® yarn slice. Knowing the strains and assuming an iso-
thermal state in the RUC, yarn slice stresses in the local yarn slice material coordinate system

(123 coordinates) (see Fig. 8) were computed as

0}, =IC1 (g} - {a'}a AT)
where, (20)
€} =I[T). {&.

The 6x6 stiffness matrix [C']m defines the three-dimensional stress-strain relationship for the
mth yarn slice which is assumed to be a transversely isotropic material and {a' }m are the CTE

for the mt yarn slice. The five independent material constants (E;;, Ep,, Gy, Vq2, and v,

subscript 1 corresponds to the axial fiber direction) that are required to define the [C']m matrix

and the yarn slice CTE a,;, a,, and o35 could be measured quantities based on yarn tests.
They could also be estimated by a rule of mixtures or a micromechanics analysis from
constituent properties. Such an estimate would require a knowledge of fiber properties, matrix
properties and the yarn packing density p4 (or yarn fiber volume fraction). The transformation
matrix [T],, for the strains in Eq. (20) is defined in Appendix A.

The average stresses in the RUC were found by first transforming yarn slice stresses to
the global RUC coordinates and then computing the volume average of the stresses in all the

yarn slices as

@ =3 V.(o.

where, @n
{o}, =[T] {0},
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where V,_, is the volume fraction of the mt yarn slice in the RUC and N is the total number of

yarn slices (including the interstitial matrix material slice) in the RUC. The [T]: matrix is the

transpose of the matrix [T],, defined in Eqn. (A1) and is used to transform stresses from yarn
slice material coordinates (123) to the global RUC coordinates (XYZ).

Based on Eqgns. (18) - (21) the effective stiffness matrix [C eff] of the RUC was written

in terms of the yarn slice stiffness matrices, transformation matrices and volume fractions as

(Ce1 = 2 ValTIE[C] [71.) 22)

m=1

and the overall CTEs for the RUC were given by

[a] = [ceff]_'{ él(VN[T]:[C'] {a}m)} (23)

A convergence study was performed to determine the appropriate number of yarn

slices, n, in the undulating portions of the yarns, required to yield converged values for the

overall stiffnesses [C eff]‘ The computed stiffnesses for the woven and braided composites in
the present study were found to be unchanged for n > 12. A value of n = 12 was used for all
the analjses in this study. The overall stiffness matrix [C eff] was inverted to obtain the
overall compliance matrix [S eff] which was used to determine overall moduli and Poisson's
ratios [18].

Analysis of Stacked Oriented Textile Layers

For laminates made by stacking layers with different orientations, the thermo-elastic

properties for each layer can be obtained from the models described in the preceeding sections,
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using appropriate tensor transformations. For the layered textile composite laminate, it is
assumed that classical lamination theory can be used to compute thermal and mechanical
laminate properties. Each layer of the textile is treated as a lamina in this analysis. Nesting
between the layers, by which layers slide into the available space in the adjacent layers, is not

accounted for in the present framework of the classical lamination scheme.

RESULTS AND DISCUSSION

The above geometric modeling and analytical technique, for textile composite overall
thermo-mechanical properties, was implemented in a user-friendly, windows compatible,
personal computer-based code called Textile Composite Analysis for Design (TEXCAD).
TEXCAD is also capable of predicting textile composite damage onset, damage growth, failure
modes and ultimate strength. The formulation for the strength analysis will be presented in a
subsequent paper. In the present paper, TEXCAD was used to analyze 2-D woven (plain, 5-
and 8-harness satin), 2-D braided, and 2x2, 2-D triaxial braided composites. The calculated
overall stiffnesses were correlated with available 3-D finite element (FEM) results and test
data. Parametric studies were also performed to study the effects of various fabric parameters
on overall properties.

All the analyses in the present study were made for yarns made of Hercules AS4
graphite fibers impregnated with Hercules 3501-6 epoxy matrix. A yarn fiber packing density,
pg, of 0.75 and a fiber diameter, dy, of 0.007 mm was used in all calculations. The thermo-
mechani@ properties used for the impregnated yarns (V¢ = 75%) and the resin are given in
Table 1. The CTE's for the impregnated yarns with a 75% fiber content were calculated using
a micromechanics analysis based on an Airy's stress function approach for a square fiber
packing [21]. The CTE for the 3501-6 epoxy resin (40x10-5/°C) was available in the literature
[22]. The CTE's for the fiber (o), = -0.61x10°6/°C and oy, = 3.8x10°6/°C) were back-

calculated using the square array micromechanics model [21] together with the available
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CTE's for the resin and for a unidirectional 60% fiber volume fraction AS4/3501-6 laminate.

The laminate CTE's were taken from manufacturers data sheets [23].

Woven Composites

The thermal and mechanical elastic constants for plain, S-harness satin and 8-harness
satin weave composites calculated using TEXCAD (the present analysis) are shown in Table 2.
The calculated results correlated well with finite element (FEM) results and test data reported
in Ref. 13. A yarn spacing of 1.411 mm and an overall fiber volume fraction, V;, of 64%
[13] were used for all the three woven architectures. The yarn size was not specified in Ref.
13. It was, therefore, assumed to be 3 k (k - one thousand filaments) for both the fill and
warp yarns. Using the geometric modeling approach described earlier, a 3 k yarn size led to a
19.4 degree crimp angle for the given yarn spacing and V;. The crimp angle, for the plain
weave composite, measured from the micrographs in Ref. 13, varied between 8 and 18
degrees. A 3 k yarn size was also used for calculating the results in Table 2 for the 5-harness
satin and 8-harness satin weave composites.

Table 2 also includes results for a [0/90/r], laminate (r - resin layer) calculated using
classical lamination theory (CLT). To allow a direct comparison with the woven composites,
the 0 and 90 degree plies were assigned the impregnated yarn (V; = 75%) material properties
(Table 1). Since the yarns (plies) had a 75% fiber content, a resin layer, r, was added to the
cross-ply laminate to achieve an overall composite V¢ = 64%. The volume fraction of the
resin layer in the laminate was equal to that of the interstitial matrix in the woven composites.
The CLT results further verify the trends in the results for the three architectures. Since the
plain, 5-harness satin and 8-harness satin weaves have increasing amounts of yarn straight
sections, L,,, (see Eqns. (5) and (7)) their moduli and CTE's should approach those of the
cross-ply laminate.

Woven composite prepreg is often manufactured in different yarn sizes, such as, 3 k,

6k, and 12 k. A parametric study was performed, using TEXCAD, to investigate the effects
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of yarn size on the overall thermal and mechanical properties. Figure 9 shows the effects of

yarn size on the crimp angle and the stiffness properties for a plain weave composite. For the

same yarn spacing, yarn packing density and overall composite volume fraction, the crimp =
angle increased significantly with increasing yarn size. The in-plane moduli, E,x and E,
decreased while, E,,, increased with increasing yarn size. The shéar moduli, the in-plane
Poisson's ratio, Vays (Fig. 9) and the in-plane CTE's, o, and ayy, (see Fig. 10) were not very
sensitive to yarn size effects. However, the through-thickness CTE, a.,,, (Fig. 10) and
Poisson's ratios, v,, and Vy,, (Fig. 9) were very sensitive to yarn size.

Note that, since the overall composite V; and interstitial matrix volume fraction was
kept constant while the yarn size was varied, a CLT-based analysis would have predicted no
change in the overall properties with varying yarn size. It is, therefore, necessary to explicitly
model the yarn architecture and crimp to investigate the effects of fabric parameters on overall

thermal and mechanical properties of textile composites.

2-D Braided Composites

A yarn spacing of 1.411 mm (perpendicular to the yamn axial direction) and an overall
fiber volume fraction, Vi, of 64% were used for the 2-D braided composites analyzed. As in
the plain weave composite, a 2 k yarn size, a 0.75 yarn packing density, and a 0.007 mm fiber
diameter were used for calculating the results for the different 2-D braided composites. A
parametric study was performed to study the effects of bl;aid angle variations on composite
properties. Figures 11 and 12 show the effects of braid angle on the crimp angle, thermal, and
mechanical properties of the 2-D braided composites. A good correlation was obtained with
FEM results [13] for a 45 degree braid angle for the same braid parameters (Fig. 11). Since
the 45 degree braided composite is equivalent to a plain weave composite rotated by 45
degrees (see Figs. 4 and 7), the computed results for a 45 degree braided composite were also

verified by transforming the plain weave stiffnesses by 45 degrees.
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The in-plane properties, E,,, E,y, G,, and v,,, varied significantly with braid angle
(Fig. 11). Through-thickness Poisson's ratios, v,, and v,,, and modulus, E,,, were less
sensitive to braid angle. Crimp angle (Fig. 12) varied between 6.7 and 13.2 degrees for braid
angles between 15 and 75 degrees. The in-plane CTE's, a,,, and a,, varied significantly

with braid angle. Through-thickness CTE, a.,,, was less sensitive to braid angle.

2x2, 2-D Triaxial Braided Composites

The three different triaxial braided composites tested in Ref. 19 were analyzed using
the present TEXCAD analysis. The yarn architecture parameters such as braid angle, braider
and axial yarn sizes, axial yarn spacing and overall composite volume fraction for the three
architectures (A1, Bl, B2) are given in Table 3. These parameters along with a yarn packing
density of 0.75 and a fiber diameter of 0.007 mm were used as input to TEXCAD for
calculating the results in Table 4. The specimens in Ref. 19 were made with AS4 graphite
fiber yarns and Shell 1895 epoxy resin. It was assumed that the 1895 epoxy had the same
material properties as the 3501-6 resin (Table 1). Thus, the material properties for the
impregnated yarns and the resin in Table 1 were used in the present analysis of 2-D triaxial
braids.

Correlations of the computed elastic constants (Table 4) with test data [19] and FEM
results [13, 19] were very good for all the three architectures. Further testing will be required
to verify the results for the in-plane shear moduli, the through-thickness properties and the
CTE's. It was shown in Ref. 16 that the results for in-plane moduli (including G,,) and
Poisson' ratio using the present analysis technique correlated well with test data over a wide
range of architecture parameters for 2x2, 2-D triaxial braided composites. Parametric studies
were also conducted in Ref. 16 to investigate the effects of braid angle, yarn size, and axial
yarn content on overall stiffness properties of triaxial braided composites.

The overall fiber volume fraction for a textile composite, measured after fabrication,

can often differ by a few percent from the specified fiber content. Furthermore, variations
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may occur in the fiber volume fraction from one composite plate to another. It is, therefore,
important to investigate the sensitivity of overall thermal and mechanical properties to fiber
volume fraction. Figures 13 and 14 show results (for the Bl architecture) for the effects of
fiber volume fraction on the thermal and mechanical properties of triaxial braided composites.
Except for E,, and E,,, which increased proportionately with Vy, the shear moduli, E,,, the
Poisson's ratios and the in-plane CTE's (Fig. 14) were not very sensitive to variations in V.
For a 9% increase in V¢ (55% to 60%), E,, and E,, increased by about 8.3%. This trend in
the E,, was further verified by test data (see Fig. 13) for the B1 architecture [20]. Figure 14

shows that the crimp angle increased while the a.,, decreased significantly with increasing V.

SUMMARY

A general purpose micromechanics analysis that discretely models the yarn architecture
within the textile repeating unit cell, was developed to predict overall, three dimensional,
thermal and mechanical properties. This analytical technique was implemented in a user-
friendly, personal computer-based, windows compatible code called Textile Composite
Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-
harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided
composites. The calculated overall stiffnesses correlated well with available 3-D finite element
results and test data.

Based on a parametric study performed on plain weave composites, it was found that
for the same yarn spacing, yarn packing density and overall composite volume fraction, the
crimp angle increased significantly with increasing yarn size. The in-plane moduli, E,, and
E,,, decreased while, E,,, increased with increasing yarn size. The shear moduli, the in-plane
Poisson's ratio, v,,, and the in-plane CTE's, o, and o, were not very sensitive to yarn size

xy? Yy’

effects. However, the through-thickness CTE, a,,, and Poisson's ratios, v,, and v,,, were

yz?

very sensitive to yarn size.
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The effects of braid angle were investigated for the 2-D braided composites. The in-
plane properties, E,,, E,,, G,, and v,,, varied significantly with braid angle. Through-

thickness Poisson's ratios, v,, and v

vy and modulus, E,,, were less sensitive to braid angle.

Crimp angle varied between 6.7 and 13.2 degrees for braid angles between 15 and 75 degrees.
The in-plane CTE's, a,,, and a,,, varied significantly with braid angle. Through-thickness
CTE, a.,,, was less sensitive to braid angle.

The effects of fiber volume fraction on the thermal and mechanical properties of 2x2,
2-D triaxial braided composites were also investigated. Except for E,, and E,,, which
increase proportionately with V, the shear moduli, E,,, the Poisson's ratios and the in-plane
CTE's were not very sensitive to variations in V;. For a 9% increase in V;(55% to 60%), E,,
and E,, increased by about 8.3%. The crimp angle increased while the a.,, decreased
significantly with increasing V.

The present TEXCAD analysis provides a useful tool for the prediction of thermo-
elastic constants for a wide range of textile composite architectures. It also provides a means
to conduct sensitivity studies for the numerous parameters that can affect the properties of
textile composites. Finally, it has the potential for being implemented as an element
constitutive model in a finite element formulation, thus, providing the capability of structural

analysis for textile composite structures.
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APPENDIX A

The transformation matrix [T],, for the strains in Eq. (20) is defined as [16]

i 2 2 2 7]
ay, a, ap a,,a 2,8, a5
2 2
ay ay adx dpan a3, dyay
2 2 2
Tl = ay ay ay 385 a3dy 33y
[T], =

2a,2, 23,3, 2a,a, (azzass +az3332) (azoa:u +321333) a3, +anasl)
2a,,a,, 2a,a, 2a,a, (332313 +aasa|2) (anan +a,a,

(
) (aalalz +aszan)
23,3, 23,3y 2a52y (312323+a|3322) (1332|+311323) (

a3, taa, )_

(A1)
where a;; (i = 1-3, j = 1-3) are the direction cosines between the yarn slice material
coordinate axes (123) and the global RUC axes (XYZ) (see Fig. 8). For a yarn slice with its
longitudinal material axis (1-axis) oriented at angles 8 and B with respect to the global RUC

coordinates, the 3x3, [ay] matrix (i = 1-3, j = 1-3) is given by

cos(8)cos(B) sin(8)cos(B) sin(p)
[aﬁ] = -sin(0) cos(0) 0 (A2)
-cos(0)sin(B) -sin(@)sin(B) cos(P)

Equation (A2) was derived by assuming that the 2-axis (i.e. the in-plane transverse direction,
see Fig. 8) of the yarn slice was always perpendicular to the global Z-axis for any 6 or 8
rotation of the yarn slice 1-axis (i.e. the axial fiber direction). This merely simplified the

definition of the direction cosines without compromising the generality of the approach.
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Table 1.- Yarn and resin properties used in the analysis [13, 16, 21, 22, 23].

Material | E,;, GPa | Ep, GPa | Gyy, GPa | vy vy, | CTE @, | CTE oy,

106/°C | 10°6/°C
Yarn | 144.80 | 11.73 552 | 023 | 030 | -0.324 | 14.000
Resin | 3.45 3.45 128 | 035 | 035 | 40.000 | 40.000

Note: The 1-axis is along the fiber direction, the 2-axis is perpendicular to the fibers but in
the plane of the lamina and the 3-axis is in the out-of-plane direction.

Table 2.- Comparison of results for woven composites.

La?;;neate Approach :"y" ' | Ew (G;"z’ Gyys | Vxas . Oxx> Olyys Ozz)
y vAl -6
Gﬁa, GPA | oI= | GPa | vy, 106/oC | 106/°C
Plain |TEXCAD | 64.38 | 11.49 | 5.64 | 4.87 | .396 | .027 | 1.334 | 20.712
weave |FEM[13]|63.78 | 11.38 | 4.97 | 4.82 | .329 | .031 - -
| Testp13] | 61.92| - - |- - |.110 - -
5-hamness | TEXCAD | 66.33 | 11.51 | 4.93 | 4.89 | .342 | .034 | 1.462 | 21.242
satin - pemi3] | 65.99 | 11.38 | 5.03 | 4.96 | .320 | .030 ; ]
weEave
Test [13] | 69.43 - - | 524 - |.060 - -
8-harness | TEXCAD | 66.81 | 11.51 | 4.76 | 4.89 |.329 | .035 | 1.494 | 21.381
satin | ppn13) | 66.74 | 11.45 | 5.03 | 4.96 | .320 | .030 ; ;
weave
Test[13] | 72.19 ] - - 676 - |.060 - -
[0/90/r', | cLT |67.60 - - 489 | - |.038| 1.548 -
laminate

IThe r represents a resin layer used in the laminate to simulate the effect of the interstitial
matrix in the woven composite.
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Table 3.- Input parameters for 2x2, 2-D triaxial braided composites [19].

2-D triaxial | Braid angle, | Braider yarn | Axial yarn | Axial yamn Overtlﬂl fiber
) . . . volume
braid | degrees size, k size, k spacing, mm fraction, %
Al 62.3 12 24 6.096 54.0
Bl 67.4 6 18 5.320 51.2
B2 67.9 6 18 5.820 52.0

Table 4.- Comparison of results for 2x2, 2-D triaxial braided composites.

}:yr;f Approach Exw | By | B | Grys | G Gy Vay Oxxs Ay
GPa | GPA | GPa | GPa | GPa | GPa 10-6/°C | 106/°C
A1 | TEXCAD |45.14 1 40.10 | 10.42 | 14.84 | 4.64 | 4.13 | .291 | 1.675 | 2.650
FEM [19] | 53.16 | 46.95 - - - - | .305 -
Test [19] | 45.44 | 45.64 - - - - 1.307 -
g1 | TEXCAD |48.4242.48 | 10.13 | 11.07 [ 4.40 [ 3.90  .205 | 1.937 | 2.901
FEM [19] | 62.12 | 47.51 - - - - | .21 -
Test [19] | 44.47 [ 45.16 - - - - 1.199 -
gy | TEXCAD |50.42|42.63 | 10.23 | 11.08 | 4.31 | 3.90 | .205 | 1.870 | 2.897
FEM! [19] | 51.09 | 43.58 | 12.07 | 12.41 | - - |.214 -
Test [19] | 48.47 | 43.51 - - - 1.190 -

IThe E,, and G,, were reported in Ref. [

13] for the B2 architecture.
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- repeating unit cell (RUC)

(a) plain weave

H

(c) 8-harness satin weave

(b) 5-harness satin weave

Fig. 1.- Typical yarn interlacing patterns for woven fabrics.
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Braider Yarns Axial Yarns

(a) Longitudinal section along axial yarns

Axial Yarns
(b) Transverse section

Braider Yarns Axial Yarns

(c) Section along braider yarns

Fig. 3 - Typical cross-sectional micrographs of a 2x2, 2-D triaxial
braided composite.
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Fig. 5.- The RUC geometry and notation for a 5-harness

ECTION A-A

satin weave composite.
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